Nvidia researchers have achieved a major leap in robotic dexterity thanks to Eureka, an AI agent that allegedly can teach bots complex skills like pen-spinning tricks as adroitly as humans.
The new technique, outlined in a paper published Thursday, builds on recent advances in large language models such as OpenAI’s GPT-4. Eureka leverages generative AI to autonomously write sophisticated reward algorithms that enable robots to learn via trial-and-error reinforcement learning. This approach has proven over 50% more effective than human-authored programs, the paper outlines.
“Eureka has also taught quadruped, dexterous hands, cobot arms and other robots to open drawers, use scissors, catch balls and nearly 30 different tasks,” an official blog post by Nvidia says.
Eureka is the latest demonstration of Nvidia’s pioneering work in steering AI with language models. Recently, the company open-sourced SteerLM—a method that aligns AI assistants to be more helpful by training them on human feedback.
Similar to Eureka, SteerLM also utilizes advances in language models, but focuses them on a different challenge—improving AI assistant alignment. SteerLM trains assistants by having them practice conversations, like a robot learning by doing. The system gives feedback on the assistant’s responses through attributes like helpfulness, humor, and quality.